Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Clicking on the Add button next to a paper title will add that paper to your custom schedule.
Clicking on the Remove button next to a paper will remove that paper from your custom schedule.

TEC-1: Restoration and Enhancement 1

Session Type: Poster
Time: Tuesday, September 21, 13:30 - 15:00
Location: Area G
Session Chair: Denis Kouame, University of Toulouse III
 
   TEC-1.1: CONTEXTUAL COLORIZATION AND DENOISING FOR LOW-LIGHT ULTRA HIGH RESOLUTION SEQUENCES
         Nantheera Anantrasirichai; University of Bristol
         David Bull; University of Bristol
 
   TEC-1.2: IMAGE DENOISING INSPIRED BY QUANTUM MANY-BODY PHYSICS
         Sayantan Dutta; Institut de Recherche en Informatique de Toulouse, UMR CNRS 5505, Université de Toulouse
         Adrian Basarab; Institut de Recherche en Informatique de Toulouse, UMR CNRS 5505, Université de Toulouse
         Bertrand Georgeot; Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS
         Denis Kouamé; Institut de Recherche en Informatique de Toulouse, UMR CNRS 5505, Université de Toulouse
 
   TEC-1.3: R3L: CONNECTING DEEP REINFORCEMENT LEARNING TO RECURRENT NEURAL NETWORKS FOR IMAGE DENOISING VIA RESIDUAL RECOVERY
         Rongkai Zhang; Nanyang Technological University
         Jiang Zhu; Nanyang Technological University
         Zhiyuan Zha; Nanyang Technological University
         Justin Dauwels; Delft University of Technology
         Bihan Wen; Nanyang Technological University
 
   TEC-1.4: DEEP GAUSSIAN DENOISER EPISTEMIC UNCERTAINTY AND DECOUPLED DUAL-ATTENTION FUSION
         Xiaoqi Ma; École Polytechnique Fédérale de Lausanne (EPFL)
         Xiaoyu Lin; École Polytechnique Fédérale de Lausanne (EPFL)
         Majed El Helou; École Polytechnique Fédérale de Lausanne (EPFL)
         Sabine Süsstrunk; École Polytechnique Fédérale de Lausanne (EPFL)
 
   TEC-1.5: HYPERSPECTRAL IMAGE DENOISING WITH LOG-BASED ROBUST PCA
         Yang Liu; Qingdao University
         Qian Zhang; Qingdao University
         Yongyong Chen; Harbin Institute of Technology
         Qiang Cheng; University of Kentucky
         Chong Peng; Qingdao University
 
   TEC-1.6: LOW-DOSE CT DENOISING USING A STRUCTURE-PRESERVING KERNEL PREDICTION NETWORK
         Lu Xu; The Chinese University of Hong Kong
         Yuwei Zhang; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer
         Ying Liu; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer
         Daoye Wang; ETH Zurich
         Mu Zhou; SenseBrain Technology Limited LLC
         Jimmy Ren; SenseTime Research; Qing Yuan Research Institute, Shanghai Jiao Tong University
         Jingwei Wei; Institute of Automation, Chinese Academy of Sciences
         Zhaoxiang Ye; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer
 
   TEC-1.7: LOW-RANK REGULARIZED JOINT SPARSITY FOR IMAGE DENOISING
         Zhiyuan Zha; Nanyang Technological University
         Bihan Wen; Nanyang Technological University
         Xin Yuan; Nokia Bell Labs
         Jiantao Zhou; University of Macau
         Ce Zhu; University of Electronic Science and Technology of China
 
   TEC-1.8: AN INTERPRETATION OF REGULARIZATION BY DENOISING AND ITS APPLICATION WITH THE BACK-PROJECTED FIDELITY TERM
         Einav Yogev-Ofer; Tel-Aviv University
         Tom Tirer; Tel-Aviv University
         Raja Giryes; Tel-Aviv University
 
   TEC-1.9: COLOR CHANNEL FUSION NETWORK FOR LOW-LIGHT IMAGE ENHANCEMENT
         Lingchao Zhao; Tianjin University
         Xiaolin Gong; Tianjin University
         Kaihua Liu; Tianjin University
         Jian Wang; Tianjin University
         Bai Zhao; Tianjin University
         Yu Liu; Tianjin University
 
   TEC-1.10: A SINGLE BACKLIT IMAGE ENHANCEMENT METHOD FOR IMPROVEMENT OF VISIBILITY OF DARK PART
         Masato Akai; Yamaguchi University
         Yoshiaki Ueda; Fukuoka University
         Takanori Koga; Kindai University
         Noriaki Suetake; Yamaguchi University
 
   TEC-1.11: INTEGRATION-AND-DIFFUSION NETWORK FOR LOW-LIGHT IMAGE ENHANCEMENT
         Pengliang Tang; Beijing University of Posts and Telecommunications
         Xiaoqiang Guo; Academy of Broadcasting Science
         Guodong Ju; GuangDong TUS-TuWei Technology Co.,Ltd
         Liangheng Shen; GuangDong TUS-TuWei Technology Co.,Ltd
         Aidong Men; Beijing University of Posts and Telecommunications
 
   TEC-1.12: SUBBAND ADAPTIVE ENHANCEMENT OF LOW LIGHT IMAGES USING WAVELET-BASED CONVOLUTIONAL NEURAL NETWORKS
         Zhe Ji; Xidian University
         Cheolkon Jung; Xidian University