Paper ID | TEC-1.8 | ||
Paper Title | AN INTERPRETATION OF REGULARIZATION BY DENOISING AND ITS APPLICATION WITH THE BACK-PROJECTED FIDELITY TERM | ||
Authors | Einav Yogev-Ofer, Tom Tirer, Raja Giryes, Tel-Aviv University, Israel | ||
Session | TEC-1: Restoration and Enhancement 1 | ||
Location | Area G | ||
Session Time: | Tuesday, 21 September, 13:30 - 15:00 | ||
Presentation Time: | Tuesday, 21 September, 13:30 - 15:00 | ||
Presentation | Poster | ||
Topic | Image and Video Processing: Restoration and enhancement | ||
IEEE Xplore Open Preview | Click here to view in IEEE Xplore | ||
Abstract | The vast majority of image recovery tasks are ill-posed problems. As such, methods that are based on optimization use cost functions that consist of both fidelity and prior (regularization) terms. A recent line of works imposes the prior by the Regularization by Denoising (RED) approach, which exploits the good performance of existing image denoising engines. Yet, the relation of RED to explicit prior terms is still not well understood, as previous work requires too strong assumptions on the denoisers. In this paper, we make two contributions. First, we show that the RED gradient can be seen as a (sub)gradient of a prior function—but taken at a denoised version of the point. As RED is typically applied with a relatively small noise level, this interpretation indicates a similarity between RED and traditional gradients. This leads to our second contribution: We propose to combine RED with the Back-Projection (BP) fidelity term rather than the common Least Squares (LS) term that is used in previous works. We show that the advantages of BP over LS for image deblurring and super-resolution, which have been demonstrated for traditional gradients, carry on to the RED approach. |