Technical Program

All times are in Alaska local time (AKDT/UTC−08:00)

Click on the icon to view the manuscript on IEEE XPlore in the IEEE ICIP 2021 Open Preview.

SS-NNC: Special Session: Neural Network Compression and Compact Deep Features

Paper Presentations and Interactive Q&A Time: Tuesday, September 21, 08:00 - 09:30
Session Chairs: Wojciech Samek, Heinrich Hertz Institute, Germany, Werner Bailer, Joanneum Research, Graz, Austria, Manouchehr Rafie, Gyrfalcon Technology Inc and Karsten Müller, Heinrich Hertz Institute, Germany
 
 SS-NNC.1: FILTER PRUNING VIA SOFTMAX ATTENTION
         Sungmin Cho; Chung-Ang University
         Hyeseong Kim; Chung-Ang University
         Junseok Kwon; Chung-Ang University
 
 SS-NNC.2: OPTIMIZATION-BASED NEURAL NETWORKS COMPRESSION
         Younes Tahiri; CEA List
         Mohamed El Amine Seddik; Ecole Polytechnique
         Mohamed Tamaazousti; CEA List
 
 SS-NNC.3: ONLINE WEIGHT PRUNING VIA ADAPTIVE SPARSITY LOSS
         George Retsinas; National Technical University of Athens
         Athena Elafrou; National Technical University of Athens
         Georgios Goumas; National Technical University of Athens
         Petros Maragos; National Technical University of Athens
 
 SS-NNC.4: ENCODER OPTIMIZATIONS FOR THE NNR STANDARD ON NEURAL NETWORK COMPRESSION
         Paul Haase; Fraunhofer Heinrich-Hertz-Institute
         Daniel Becking; Fraunhofer Heinrich-Hertz-Institute
         Heiner Kirchhoffer; Fraunhofer Heinrich-Hertz-Institute
         Karsten Müller; Fraunhofer Heinrich-Hertz-Institute
         Heiko Schwarz; Fraunhofer Heinrich-Hertz-Institute
         Wojciech Samek; Fraunhofer Heinrich-Hertz-Institute
         Detlev Marpe; Fraunhofer Heinrich-Hertz-Institute
         Thomas Wiegand; Fraunhofer Heinrich-Hertz-Institute
 
 SS-NNC.5: ON THE ROLE OF STRUCTURED PRUNING FOR NEURAL NETWORK COMPRESSION
         Andrea Bragagnolo; University of Turin
         Enzo Tartaglione; University of Turin
         Attilio Fiandrotti; University of Turin
         Marco Grangetto; University of Turin
 
 SS-NNC.6: MIND THE STRUCTURE: ADOPTING STRUCTURAL INFORMATION FOR DEEP NEURAL NETWORK COMPRESSION
         Homayun Afrabandpey; Nokia Technologies
         Anton Muravev; Tampere University
         Hamed R. Tavakoli; Nokia Technologies
         Honglei Zhang; Nokia Technologies
         Francesco Cricri; Nokia Technologies
         Moncef Gabbouj; Tampere University
         Emre Aksu; Nokia Technologies
 
 SS-NNC.7: COMPRESSING DEEP CNNS USING BASIS REPRESENTATION AND SPECTRAL FINE-TUNING
         Muhammad Tayyab; University Of Central Florida
         Fahad Ahmad Khan; University Of Central Florida
         Abhijit Mahalanobis; University Of Central Florida
 
 SS-NNC.8: HYBRID PRUNING AND SPARSIFICATION
         Hamed Rezazadegan Tavakoli; Nokia Technologies
         Joachim Wabnig; Nokia Bell Labs
         Francesco Cricri; Nokia Technologies
         Honglei Zhang; Nokia Technologies
         Emre Aksu; Nokia Technologies
         Iraj Saniee; Nokia Bell Labs
 
 SS-NNC.9: DATA-DRIVEN LOW-RANK NEURAL NETWORK COMPRESSION
         Dimitris Papadimitriou; UC Berkeley
         Swayambhoo Jain; Interdigital AI Lab
 
 SS-NNC.10: ZERO-SHOT LEARNING OF A CONDITIONAL GENERATIVE ADVERSARIAL NETWORK FOR DATA-FREE NETWORK QUANTIZATION
         Yoojin Choi; Samsung Semiconductor Inc.
         Mostafa El-Khamy; Samsung Semiconductor Inc.
         Jungwon Lee; Samsung Semiconductor Inc.
 
 SS-NNC.11: COMPREHENSIVE ONLINE NETWORK PRUNING VIA LEARNABLE SCALING FACTORS
         Muhammad Umair Haider; Lahore University of Management Sciences
         Murtaza Taj; Lahore University of Management Sciences
 
 SS-NNC.13: LATENT-SPACE SCALABILITY FOR MULTI-TASK COLLABORATIVE INTELLIGENCE
         Hyomin Choi; Simon Fraser University
         Ivan Bajić; Simon Fraser University
 
 SS-NNC.14: DISCRIMINATIVE PATCH DESCRIPTOR LEARNING WITH FOCAL TRIPLET LOSS FUNCTION
         Song Wang; Zhengzhou University
         Xin Guo; Zhengzhou University
         Yun Tie; Zhengzhou University
         Lin Qi; Zhengzhou University
         Ling Guan; Ryerson University