Technical Program

All times are in Alaska local time (AKDT/UTC−08:00)

Click on the icon to view the manuscript on IEEE XPlore in the IEEE ICIP 2021 Open Preview.

SS-MIA: Special Session: Deep Learning and Precision Quantitative Imaging for Medical Image Analysis

Paper Presentations and Interactive Q&A Time: Wednesday, September 22, 14:30 - 16:00
Session Chairs: Le Lu,  PAII Inc. Bethesda, USA , Islem Rekik, Istanbul Technical University, Istanbul, Turkey , Ling Zhang, PAII Inc. Bethesda, USA  and Adam Harrison, PAII Inc. Bethesda, USA 
 
 SS-MIA.1: DEEP CONTEXT-ENCODING NETWORK FOR RETINAL IMAGE CAPTIONING
         Jia-Hong Huang; University of Amsterdam
         Ting-Wei Wu; Georgia Institute of Technology
         C.-H. Huck Yang; Georgia Institute of Technology
         Marcel Worring; University of Amsterdam
 
 SS-MIA.2: FEATURE FUSION ENSEMBLE ARCHITECTURE WITH ACTIVE LEARNING FOR MICROSCOPIC BLOOD SMEAR ANALYSIS
         Jeevan Jamakayala; Indian Institute of Technology Tirupati
         Rama Krishna Sai Gorthi; Indian Institute of Technology Tirupati
 
 SS-MIA.3: EVOLVING DEEP ENSEMBLES FOR DETECTING COVID-19 IN CHEST X-RAYS
         Piotr Bosowski; Silesian University of Technology
         Joanna Bosowska; Medical University of Silesia
         Jakub Nalepa; Silesian University of Technology
 
 SS-MIA.4: A TEACHER-STUDENT LEARNING BASED ON COMPOSED GROUND-TRUTH IMAGES FOR ACCURATE CEPHALOMETRIC LANDMARK DETECTION
         Yu Song; Ritsumeikan University
         Xu Qiao; Shandong University
         Yutaro Iwamoto; Ritsumeikan University
         Yen-Wei Chen; Ritsumeikan University
 
 SS-MIA.5: A NOVEL METHOD FOR SEGMENTATION OF BREAST MASSES BASED ON MAMMOGRAPHY IMAGES
         Haichao Cao; Hangzhou Hikvision Digital Technology Company Limited
         Shiliang Pu; Hangzhou Hikvision Digital Technology Company Limited
         Wenming Tan; Hangzhou Hikvision Digital Technology Company Limited
 
 SS-MIA.6: UNSUPERVISED MEDICAL IMAGE ALIGNMENT WITH CURRICULUM LEARNING
         Mihail Burduja; University of Bucharest
         Radu Tudor Ionescu; University of Bucharest
 
 SS-MIA.7: SEPUNET: DEPTHWISE SEPARABLE CONVOLUTION INTEGRATED U-NET FOR MRI RECONSTRUCTION
         Soheil Zabihi; Concordia University
         Elahe Rahimian; Concordia University
         Amir Asif; York University
         Arash Mohammadi; Concordia University
 
 SS-MIA.8: DEEP FEATURES FUSION WITH MUTUAL ATTENTION TRANSFORMER FOR SKIN LESION DIAGNOSIS
         Li Zhou; University of Massachusetts Lowell
         Yan Luo; University of Massachusetts Lowell
 
 SS-MIA.9: EXPLAINABLE PREDICTION OF RENAL CELL CARCINOMA FROM CONTRAST-ENHANCED CT IMAGES USING DEEP CONVOLUTIONAL TRANSFER LEARNING AND THE SHAPLEY ADDITIVE EXPLANATIONS APPROACH
         Fuchang Han; Central South University
         Shenghui Liao; Central South University
         Siming Yuan; Central South University
         Renzhong Wu; Central South University
         Yuqian Zhao; Central South University
         Yu Xie; Central South University
 
 SS-MIA.10: TOWARDS DEEP LEARNING-BASED SARCOPENIA SCREENING WITH BODY JOINT COMPOSITION ANALYSIS
         Yung-Chih Chen; Chang-Gung Memorial Hospital
         Jun-Wei Hsieh; National Yang Ming Chiao Tung University
         Yao-Hong Yang; Chang-Gung Memorial Hospital
         Chien-Hung Lee; Chang-Gung Memorial Hospital
         Ping-Yang Chen; National Yang Ming Chiao Tung University
         Pei-Yi Yu; National Taiwan Ocean University
         Arpita Samanta Santa; National Taiwan Ocean University