Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-3DPU.11
Paper Title A NOVEL MULTI-VIEW LABELLING NETWORK BASED ON PAIRWISE LEARNING
Authors Yue Zhang, Akin Caliskan, Adrian Hilton, Jean-Yves Guillemaut, University of Surrey, United Kingdom
SessionSS-3DPU: Special Session: 3D Visual Perception and Understanding
LocationArea B
Session Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Poster
Topic Applications of Machine Learning: Machine Learning for 3D Image and Video Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Correct labelling of multiple people from different viewpoints in complex scenes is a challenging task due to occlusions, visual ambiguities, as well as variations in appearance and illumination. In recent years, deep learning approaches have proved very successful at improving the performance of a wide range of recognition and labelling tasks such as person re-identification and video tracking. However, to date, applications to multi-view tasks have proved more challenging due to the lack of suitably labelled multi-view datasets, which are difficult to collect and annotate. The contributions of this paper are two-fold. First, a synthetic dataset is generated by combining 3D human models and panoramas along with human poses and appearance detail rendering to overcome the shortage of real dataset for multi-view labelling. Second, a novel framework named Multi-View Labelling network (MVL-net) is introduced to leverage the new dataset and unify the multi-view multiple people detection, segmentation and labelling tasks in complex scenes. To the best of our knowledge, this is the first work using deep learning to train a multi-view labelling network. Experiments conducted on both synthetic and real datasets demonstrate that the proposed method outperforms the existing state-of-the-art approaches.