Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDBIO-1.6
Paper Title FEATURE DISENTANGLEMENT FOR CROSS-DOMAIN RETINA VESSEL SEGMENTATION
Authors Jie Wang, Chaoliang Zhong, Cheng Feng, Jun Sun, Fujitsu R&D Center, Co., LTD, China; Yasuto Yokota, Fujitsu Laboratories, Japan
SessionBIO-1: Biomedical Signal Processing 1
LocationArea C
Session Time:Monday, 20 September, 13:30 - 15:00
Presentation Time:Monday, 20 September, 13:30 - 15:00
Presentation Poster
Topic Biomedical Signal Processing: Medical image analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Domain shift is regarded as a key factor affecting the robustness of many models. Recently, unsupervised auxiliary learning (e.g., input reconstruction) has been proposed to improve the model’s domain transferability and alleviate cross-domain performance degradation; however, in the paradigm of existing approaches, the features extracted from various tasks are shared, which mixes the domain-invariant features from the main task and domain-specific feature from the auxiliary task, leading to an imperfect learning. To solve this problem, we propose a novel unsupervised domain adaptation method - the Disentangled Reconstruction Neural Network (DRNN) - for cross-domain retina vessel segmentation. DRNN leverages two tandem nets and disentangles the domain-invariant features and the domain-specific features in the multi-task learning process. We perform extensive experiments on public retina datasets and our proposed DRNN outperforms the competitors by a significant margin to achieve state-of-the-art results pertaining to retina vessel segmentation.