Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-MMSDF-2.2
Paper Title RPPG-BASED SPOOFING DETECTION FOR FACE MASK ATTACK USING EFFICIENTNET ON WEIGHTED SPATIAL-TEMPORAL REPRESENTATION
Authors Chenglin Yao, Shihe Wang, Jialu Zhang, Wentao He, Heshan Du, Jianfeng Ren, Ruibin Bai, Jiang Liu, University of Nottingham Ningbo China, China
SessionSS-MMSDF-2: Special Session: AI for Multimedia Security and Deepfake 2
LocationArea A
Session Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for information forensics and security
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Face spoofing detection against paper attack and video-replay attack has been well studied, whereas detecting 3D face mask attack remains challenging. Remote photoplethysmography (rPPG) signal is a recently developed liveness clue for face-spoofing detection. The main challenge of existing rPPG-based methods is that the signal can be easily distorted by background noise or object motion. To address this problem, in this work, we propose an rPPG-based facespoofing detection method using multiple regions of interests (ROIs) covering entire face, and emphasize the regions containing richer rPPG signals using larger weights. The rPPG signals of these regions form a weighted spatial-temporal map. In view of the discriminant power of EfficientNet over other deep convolutional neural networks, we propose a domain-specific EfficientNet as the classification method. Extensive experiments on two databases namely 3DMAD and HKBU-Mars V2 demonstrate the superior performance of the proposed method over state-of-the-art rPPG-based face-spoofing-detection algorithms.