Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-BSIP.2
Paper Title IMPROVING IMAGE QUALITY IN LOW-FIELD MRI WITH DEEP LEARNING
Authors Armando Garcia Hernandez, AIx-Marseille université, France; Pierre Fau, Institut Paoli-Calmettes, France; Stanislas Rapacchi, Julien Wojak, Aix-Marseille Université, France; Hugues Mailleux, Mohamed Benkreira, Institut Paoli-Calmettes, France; Mouloud Adel, Aix-Marseille Université, France
SessionMLR-APPL-BSIP: Machine learning for biomedical signal and image processing
LocationArea C
Session Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Poster
Topic Applications of Machine Learning: Machine learning for biomedical signal and image processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Low-field magnetic resonance (MR) images suffer from inherent low Signal-to-noise ratio (SNR) compared to images acquired using high-field MRI scanners. Denoising these images could help and improve further processing, such as image segmentation. In this paper a Convolutional Neural Network AutoEncoder was designed with a dedicated loss function for noise reduction. A transfer learning approach was employed in which high-field high-SNR MR images, served as targets for learning from their noise-added counterparts. Evaluation of network performances was measured on both noisy high-field and low-field MR images that had not been included in the learning step. The proposed method outperformed major denoising methods applied to MR images. SNR improvements were quantified on low-field MR images.