Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDARS-7.8
Paper Title OPTICAL FLOW ESTIMATION VIA MOTION FEATURE RECOVERY
Authors Yang Jiao, Xidian University / Johns Hopkins University, China; Guangming Shi, Xidian University, China; Trac D. Tran, Johns Hopkins University, United States
SessionARS-7: Image and Video Interpretation and Understanding 2
LocationArea H
Session Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Poster
Topic Image and Video Analysis, Synthesis, and Retrieval: Image & Video Interpretation and Understanding
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Optical flow estimation with occlusion or large displacement is a problematic challenge due to the lost of corresponding pixels between consecutive frames. In this paper, we discover that the lost information is related to a large quantity of motion features (more than 40%) computed from the popular discriminative cost-volume feature would completely vanish due to invalid sampling, leading to the low efficiency of optical flow learning. We call this phenomenon the Vanishing Cost Volume Problem. Inspired by the fact that local motion tends to be highly consistent within a short temporal window, we propose a novel iterative Motion Feature Recovery (MFR) method to address the vanishing cost volume via modeling motion consistency across multiple frames. In each MFR iteration, invalid entries from original motion features are first determined based on the current flow. Then, an efficient network is designed to adaptively learn the motion correlation to recover invalid features for lost-information restoration. The final optical flow is then decoded from the recovered motion features. Experimental results on Sintel and KITTI show that our method achieves state-of-the-art performances. In fact, MFR currently ranks second on Sintel public website.