Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IP-8.10
Paper Title CORRELATION-AWARE ATTENTION BRANCH NETWORK USING MULTI-MODAL DATA FOR DETERIORATION LEVEL ESTIMATION OF INFRASTRUCTURES
Authors Naoki Ogawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama, Hokkaido University, Japan
SessionMLR-APPL-IP-8: Machine learning for image processing 8
LocationArea E
Session Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract This paper presents a correlation-aware attention branch network (CorABN) using multi-modal data for deterioration level estimation of infrastructures. CorABN can collaboratively use visual features from distress images and text features from text data recorded at the inspection to improve the estimation performance of deterioration levels. Specifically, by maximizing correlation between the visual and text features that provide useful information for the deterioration level estimation, a correlation-aware attention map can be generated. Besides, the text features are also utilized in the final estimation along with visual features improved by the attention mechanism to achieve higher estimation performance. With the losses based on both the estimation performance and the correlation, CorABN can train the entire model in an end-to-end manner. Experiments using distress images and their corresponding text data show the effectiveness of the proposed method.