Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSMR-1.2
Paper Title NATURAL SCENE STATISTICS AND CNN BASED PARALLEL NETWORK FOR IMAGE QUALITY ASSESSMENT
Authors Parima Jain, Indian Institute of Technology Jammu, India; Gitam Shikkenawis, C R Rao Advanced Institute of Mathematics, Statistics and Computer Science, India; Suman Mitra, Dhirubhai Ambani Institute of Information and Communication Technology, India
SessionSMR-1: Image and Video Quality Assessment
LocationArea F
Session Time:Tuesday, 21 September, 13:30 - 15:00
Presentation Time:Tuesday, 21 September, 13:30 - 15:00
Presentation Poster
Topic Image and Video Sensing, Modeling, and Representation: Perception and quality models for images & video
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Image Quality Assessment (IQA) tasks have increasing importance in today’s world due to the widespread use of imaging devices and social media. Statistical studies proved that naturalness measures are good discriminators for evaluating image quality. Convolutional neural networks (CNN) based IQA models gained popularity in recent years due to their enhanced performance. In this article, we present a no-reference image quality assessment method that integrates natural image statistics (NSS) with CNN. The proposed approach extracts NSS features from the image, integrates them with the CNN features to predict the quality score. Our experimental results show that the performance of the proposed method is competitive against the existing methods of image quality assessment. Cross database testing on Live in the Wild (LIVE-itW) and Smartphone Photography Attribute and Quality (SPAQ) databases shows excellent generalization.