Paper ID | MLR-APPL-IVSMR-3.1 | ||
Paper Title | IMAGE ENHANCED ROTATION PREDICTION FOR SELF-SUPERVISED LEARNING | ||
Authors | Shin'ya Yamaguchi, Sekitoshi Kanai, Tetsuya Shioda, Shoichiro Takeda, NTT, Japan | ||
Session | MLR-APPL-IVSMR-3: Machine learning for image and video sensing, modeling and representation 3 | ||
Location | Area D | ||
Session Time: | Wednesday, 22 September, 14:30 - 16:00 | ||
Presentation Time: | Wednesday, 22 September, 14:30 - 16:00 | ||
Presentation | Poster | ||
Topic | Applications of Machine Learning: Machine learning for image & video sensing, modeling, and representation | ||
IEEE Xplore Open Preview | Click here to view in IEEE Xplore | ||
Abstract | The rotation prediction (Rotation) is a simple pretext-task for self-supervised learning (SSL), where models learn useful representations for target vision tasks by solving pretext-tasks. Although Rotation captures information of object shapes, it hardly captures information of textures. To tackle this problem, we introduce a novel pretext-task called image enhanced rotation prediction (IE-Rot) for SSL. IE-Rot simultaneously solves Rotation and another pretext-task based on image enhancement (e.g., sharpening and solarizing) while maintaining simplicity. Through the simultaneous prediction of rotation and image enhancement, models learn representations to capture the information of not only object shapes but also textures. Our experimental results show that IE-Rot models outperform Rotation on various standard benchmarks including ImageNet classification, PASCAL-VOC detection, and COCO detection/segmentation. |