Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IVSMR-1.1
Paper Title A SIMPLE, EFFECTIVE WAY TO IMPROVE NEURAL NET CLASSIFICATION: ENSEMBLING UNIT ACTIVATIONS WITH A SPARSE OBLIQUE DECISION TREE
Authors Arman Zharmagambetov, Miguel Á. Carreira-Perpiñán, University of California, Merced, United States
SessionMLR-APPL-IVSMR-1: Machine learning for image and video sensing, modeling and representation 1
LocationArea C
Session Time:Tuesday, 21 September, 13:30 - 15:00
Presentation Time:Tuesday, 21 September, 13:30 - 15:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image & video sensing, modeling, and representation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We propose a new type of ensemble method that is specially designed for neural nets, and which produces surprising improvements in accuracy at a very small cost, without requiring to train a new neural net. The idea is to concatenate the output activations of internal layers of the neural net into an ``ensemble feature vector'', and train on this a decision tree to predict the class labels while also doing feature selection. For this to succeed we rely on a recently proposed algorithm to train decision trees - Tree Alternating Optimization. This simple procedure consistently improves over simply ensembling the nets in the traditional way, achieving relative error decreases of well over 10% of the original nets on the well known image classification benchmarks. As a subproduct, we also can obtain an architecture consisting of a neural net feature extraction followed by a tree classifier that is faster and more compact than the original net.