Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSMR-4.4
Paper Title LEARNING OF LINEAR VIDEO PREDICTION MODELS IN A MULTI-MODAL FRAMEWORK FOR ANOMALY DETECTION
Authors Giulia Slavic, Abrham Alemaw, Lucio Marcenaro, Carlo Regazzoni, University of Genova, Italy
SessionSMR-4: Image and Video Sensing, Modeling, and Representation
LocationArea F
Session Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Poster
Topic Image and Video Sensing, Modeling, and Representation: Statistical-model based methods
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract This paper proposes a method for performing future-frame prediction and anomaly detection on video data in a multi-modal framework based on Dynamic Bayesian Networks (DBNs). In particular, odometry data and video data from a moving vehicle are fused. A Markov Jump Particle Filter (MJPF) is learned on odometry data, and its features are used to aid the learning of a Kalman Variational Autoencoder (KVAE) on video data. Consequently, anomaly detection can be performed on video data using the learned model. We evaluate the proposed method using multi-modal data from a vehicle performing different tasks in a closed environment.