Paper ID | IMT-CIF-2.5 | ||
Paper Title | RARE: IMAGE RECONSTRUCTION USING DEEP PRIORS LEARNED WITHOUT GROUNDTRUTH | ||
Authors | Jiaming Liu, Yu Sun, Cihat Eldeniz, Weijie Gan, Hongyu An, Ulugbek S. Kamilov, Washington University in St. Louis, United States | ||
Session | IMT-CIF-2: Computational Imaging 2 | ||
Location | Area I | ||
Session Time: | Wednesday, 22 September, 14:30 - 16:00 | ||
Presentation Time: | Wednesday, 22 September, 14:30 - 16:00 | ||
Presentation | Poster | ||
Topic | Computational Imaging Methods and Models: Compressed Sensing | ||
Abstract | Abstract—Regularization by denoising (RED) is an image reconstruction framework that uses an image denoiser as a prior. Recent work has shown the state-of-the-art performance of RED with learned denoisers corresponding to pre-trained convolutional neural nets (CNNs). In this work, we propose to broaden the current denoiser-centric view of RED by considering priors corresponding to networks trained for more general artifact-removal. The key benefit of the proposed family of algorithms, called regularization by artifact-removal (RARE), is that it can leverage priors learned on datasets containing only undersampled measurements. This makes RARE applicable to problems where it is practically impossible to have fully-sampled groundtruth data for training. We validate RARE on both simulated and experimentally collected data by reconstructing a free-breathing whole-body 3D MRIs into ten respiratory phases from heavily undersampled k-space measurements. Our results corroborate the potential of learning regularizers for iterative inversion directly on undersampled and noisy measurements. |