Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-RSDA.6
Paper Title ENHANCED HYPERSPECTRAL IMAGE SUPER-RESOLUTION VIA RGB FUSION AND TV-TV MINIMIZATION
Authors Marija Vella, Heriot-Watt University, United Kingdom; Bowen Zhang, Wei Chen, Beijing Jiaotong University, China; João F. C. Mota, Heriot-Watt University, United Kingdom
SessionSS-RSDA: Special Session: Computer Vision and Machine Learning for Remote Sensing Data Analysis
LocationArea C
Session Time:Tuesday, 21 September, 08:00 - 09:30
Presentation Time:Tuesday, 21 September, 08:00 - 09:30
Presentation Poster
Topic Special Sessions: Computer Vision and Machine Learning for Remote Sensing Data Analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Hyperspectral (HS) images contain detailed spectral information that has proven crucial in applications like remote sensing, surveillance, and astronomy. However, because of hardware limitations of HS cameras, the captured images have low spatial resolution. To improve them, the low-resolution hyperspectral images are fused with conventional high-resolution RGB images via a technique known as fusion based HS image super-resolution. Currently, the best performance in this task is achieved by deep learning (DL) methods. Such methods, however, cannot guarantee that the input measurements are satisfied in the recovered image, since the learned parameters by the network are applied to every test image. Conversely, model-based algorithms can typically guarantee such measurement consistency. Inspired by these observations, we propose a framework that integrates learning and model based methods. Experimental results show that our method produces images of superior spatial and spectral resolution compared to the current leading methods, whether model- or DL-based.