Paper ID | SMR-1.5 | ||
Paper Title | VIDEO QUALITY ASSESSMENT OF USER GENERATED CONTENT: A BENCHMARK STUDY AND A NEW MODEL | ||
Authors | Zhengzhong Tu, Chia-Ju Chen, University of Texas at Austin, United States; Yilin Wang, Neil Birkbeck, Balu Adsumilli, Google Inc., United States; Alan Bovik, University of Texas at Austin, United States | ||
Session | SMR-1: Image and Video Quality Assessment | ||
Location | Area F | ||
Session Time: | Tuesday, 21 September, 13:30 - 15:00 | ||
Presentation Time: | Tuesday, 21 September, 13:30 - 15:00 | ||
Presentation | Poster | ||
Topic | Image and Video Sensing, Modeling, and Representation: Perception and quality models for images & video | ||
IEEE Xplore Open Preview | Click here to view in IEEE Xplore | ||
Abstract | Recent years have witnessed an explosion of user-generated content (UGC) shared and streamed over the Internet. Accordingly, there is a great need for accurate video quality assessment (VQA) models for consumer or UGC videos to monitor, control, and optimize this vast content. Here we contribute to advancing the UGC-VQA problem by conducting a comprehensive evaluation of leading blind VQA (BVQA) models. Besides, we also created a new fusion-based BVQA model, which we dub the \textbf{VID}eo quality \textbf{EVAL}uator (VIDEVAL), that effectively balances the trade-off between performance and efficiency. Our experimental results show that VIDEVAL achieves state-of-the-art performance at a lower computational cost. We believe our reliable and reproducible benchmark will facilitate further research on deep learning-based BVQA modeling. An implementation of VIDEVAL has been made available online\footnote{\url{https://github.com/vztu/VIDEVAL_release}}. |