Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIMT-1.2
Paper Title SHALLOW MULTI-SCALE NETWORK FOR STYLIZED SUPER-RESOLUTION
Authors Thibault Durand, Julien Rabin, David Tschumperlé, Normandie University, France
SessionIMT-1: Computational Imaging Learning-based Models
LocationArea J
Session Time:Tuesday, 21 September, 08:00 - 09:30
Presentation Time:Tuesday, 21 September, 08:00 - 09:30
Presentation Poster
Topic Computational Imaging Methods and Models: Learning-Based Models
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Image Super Resolution (SR) has come a long way since the early age of image processing. Deep learning methods nowadays give outstanding results, yet very few are actually used in digital illustration and photo retouching software due to large memory storage and GPU computational requirements, but also due to the actual lack of control provided to the user over the final result. This paper introduces a two-step framework for stylized SR using a multi-scale network built with independent parallel branches. The approach aims at: i.designing a shallow network based on image processing techniques making it usable on light hardware architecture (low memory cost, no GPU) ;ii. providing a versatile, controllable and customizable network to stylize SR results in a plug-and-play manner. We show that the proposed method offers significant advantages over state-of-the-art reference-based approaches regarding these aspects.