Paper ID | MLR-APPL-IVASR-1.5 | ||
Paper Title | TWO-STREAM BOOSTED TCRNET FOR RANGE-TOLERANT INFRA-RED TARGET DETECTION | ||
Authors | Md Jibanul Haque Jiban, Shah Hassan, Abhijit Mahalanobis, University of Central Florida, United States | ||
Session | MLR-APPL-IVASR-1: Machine learning for image and video analysis, synthesis, and retrieval 1 | ||
Location | Area D | ||
Session Time: | Monday, 20 September, 13:30 - 15:00 | ||
Presentation Time: | Monday, 20 September, 13:30 - 15:00 | ||
Presentation | Poster | ||
Topic | Applications of Machine Learning: Machine learning for image & video analysis, synthesis, and retrieval | ||
IEEE Xplore Open Preview | Click here to view in IEEE Xplore | ||
Abstract | The detection of vehicular targets in infra-red imagery is a challenging task, both due to the relatively few pixels on target and the false alarms produced by the surrounding terrain clutter. It has been previously shown [1] that a relatively simple network (known as the TCRNet) can outperform conventional deep CNNs for such applications by maximizing a target to clutter ratio (TCR) metric. In this paper, we introduce a new form of the network (referred to as TCRNet-2) that further improves performance by first processing target and clutter information in two parallel channels and then combining them to optimize the TCR metric. We also show that the overall performance can be considerably improved by boosting the performance of a primary TCRNet-2 detector, with a secondary network that enhances discrimination between targets and clutter in the false alarm space of the primary network. We analyze the performance of the proposed networks using a publicly available data set of infra-red images of targets in natural terrain. It is shown that the TCRNet-2 and its boosted version yield considerably better performance than the original TCRNet over a wide range of distances, in both day and night conditions. |