Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-NNC.7
Paper Title COMPRESSING DEEP CNNS USING BASIS REPRESENTATION AND SPECTRAL FINE-TUNING
Authors Muhammad Tayyab, Fahad Ahmad Khan, Abhijit Mahalanobis, University Of Central Florida, United States
SessionSS-NNC: Special Session: Neural Network Compression and Compact Deep Features
LocationArea B
Session Time:Tuesday, 21 September, 08:00 - 09:30
Presentation Time:Tuesday, 21 September, 08:00 - 09:30
Presentation Poster
Topic Special Sessions: Neural Network Compression and Compact Deep Features: From Methods to Standards
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We propose an efficient and straightforward method for compressing deep convolutional neural networks (CNNs) that uses basis filters to represent the convolutional layers, and optimizes the performance of the compressed network directly in the basis space. Specifically, any spatial convolution layer of the CNN can be replaced by two successive convolution layers: the first is a set of three-dimensional orthonormal basis filters, followed by a layer of one-dimensional filters that represents the original spatial filters in the basis space. We jointly fine-tune both the basis and the filter representation to directly mitigate any performance loss due to the truncation. Generality of the proposed approach is demonstrated by applying it to several well known deep CNN architectures and data sets for image classification and object detection. We also present the execution time and power usage at different compression levels on the Xavier Jetson AGX processor.