Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-MRII.4
Paper Title CONVOLUTIONAL NEURAL NETWORKS FOR OMNIDIRECTIONAL IMAGE QUALITY ASSESSMENT: PRE-TRAINED OR RE-TRAINED?
Authors Abderrezzaq Sendjasni, Université de Poitiers and NTNU, France; Mohamed-Chaker Larabi, University of Poitiers, France; Faouzi Alaya Cheikh, Norwegian University of Science and Technology, Norway
SessionSS-MRII: Special Session: Models and representations for Immersive Imaging
LocationArea A
Session Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Poster
Topic Special Sessions: Models and Representations for Immersive Imaging
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract The use of convolutional neural networks (CNN) for image quality assessment (IQA) becomes many researcher's focus. Various pre-trained models are fine-tuned and used for this task. In this paper, we conduct a benchmark study of seven state-of-the-art pre-trained models for IQA of omnidirectional images. To this end, we first train these models using an omnidirectional database and compare their performance with the pre-trained versions. Then, we compare the use of viewports versus equirectangular (ERP) images as inputs to the models. Finally, for the viewports-based models, we explore the impact of the input number on the models' performance. Experimental results demonstrated the performance gain of the re-trained CNNs compared to their pre-trained versions. Also, the viewports-based approach outperformed the ERP-based one independently of the number of selected views.