Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSMR-2.2
Paper Title A TEMPORAL STATISTICS MODEL FOR UGC VIDEO QUALITY PREDICTION
Authors Zhengzhong Tu, Chia-Ju Chen, University of Texas at Austin, United States; Yilin Wang, Neil Birkbeck, Balu Adsumilli, Google Inc., United States; Alan Bovik, University of Texas at Austin, United States
SessionSMR-2: Perception and Quality Models
LocationArea F
Session Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Poster
Topic Image and Video Sensing, Modeling, and Representation: Perception and quality models for images & video
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Blind video quality assessment of user-generated content (UGC) has become a trending and challenging problem. Previous studies have shown the efficacy of natural scene statistics for capturing spatial distortions. The exploration of temporal video statistics on UGC, however, is relatively limited. Here we propose the first general, effective and efficient temporal statistics model accounting for temporal- or motion-related distortions for UGC video quality assessment, by analyzing regularities in the temporal bandpass domain. The proposed temporal model can serve as a plug-in module to boost existing no-reference video quality predictors that lack motion-relevant features. Our experimental results on recent large-scale UGC video databases show that the proposed model can significantly improve the performances of existing methods, at a very reasonable computational expense.