Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-MMSDF-1.11
Paper Title PARTICLE SWARM AND PATTERN SEARCH OPTIMISATION OF AN ENSEMBLE OF FACE ANOMALY DETECTORS
Authors Soroush Fatemifar, Muhammad Awais, Ali Akbari, Josef Kittler, University of Surrey, United Kingdom
SessionSS-MMSDF-1: Special Session: AI for Multimedia Security and Deepfake 1
LocationArea B
Session Time:Monday, 20 September, 15:30 - 17:00
Presentation Time:Monday, 20 September, 15:30 - 17:00
Presentation Poster
Topic Special Sessions: Artificial Intelligence for Multimedia Security and Deepfake
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract While the remarkable advances in face matching render face biometric technology more widely applicable, its successful deployment may be compromised by face spoofing. Recent studies have shown that anomaly-based face spoofing detectors offer an interesting alternative to the multiclass counterparts by generalising better to unseen types of attack. In this work, we investigate the merits of fusing multiple anomaly spoofing detectors in the unseen attack scenario via a Weighted Averaging (WA) and client-specific design. We propose to optimise the parameters of WA by a two-stage optimisation method consisting of Particle Swarm Optimisation (PSO) and the Pattern Search (PS) algorithms to avoid the local minimum problem. Besides, we propose a novel scoring normalisation method which could be effectively applied in extreme cases such as heavy-tailed distributions. We evaluate the capability of the proposed system on publicly available face anti-spoofing databases including Replay-Attack, Replay-Mobile and Rose-Youtu. The experimental results demonstrate that the proposed fusion system outperforms the majority of anomaly-based and state-of-the-art multiclass approaches.