Paper ID | MLR-APPL-MDSP.7 | ||
Paper Title | 2DTPCA: A NEW FRAMEWORK FOR MULTILINEAR PRINCIPAL COMPONENT ANALYSIS | ||
Authors | Cagri Ozdemir, Randy Hoover, Kyle Caudle, South Dakota Mines, United States | ||
Session | MLR-APPL-MDSP: Machine learning for multidimensional signal processing | ||
Location | Area F | ||
Session Time: | Monday, 20 September, 13:30 - 15:00 | ||
Presentation Time: | Monday, 20 September, 13:30 - 15:00 | ||
Presentation | Poster | ||
Topic | Applications of Machine Learning: Machine learning for multidimensional signal processing | ||
IEEE Xplore Open Preview | Click here to view in IEEE Xplore | ||
Abstract | Two-directional two-dimensional principal component analysis ((2D)$^2$PCA) has shown promising results for it's ability to both represent and recognize facial images. The current paper extends these results into a multilinear framework (referred to as two-directional Tensor PCA or 2DTPCA for short) using a recently defined tensor operator for 3$^\text{rd}$-order tensors. The approach proceeds by first computing a low-dimensional projection tensor for the row-space of the image data (generally referred to as mode-1) and then subsequently computing a low-dimensional projection tensor for the column space of the image data (generally referred to as mode-3). Experimental results are presented on the ORL, extended Yale-B, COIL-100, and MNIST data sets that show the proposed approach outperforms traditional ``tensor-based" PCA approaches with a much smaller subspace dimension in terms of recognition rates. |