Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSMR-4.10
Paper Title FINE-GRAINED PLANT LEAF IMAGE RETRIEVAL USING LOCAL ANGLE CO-OCCURRENCE HISTOGRAMS
Authors Xin Chen, Griffith University, Australia; Jiawei You, Hui Tang, Nanjing University of Finance & Economics, China; Bin Wang, Yongsheng Gao, Griffith University, Australia
SessionSMR-4: Image and Video Sensing, Modeling, and Representation
LocationArea F
Session Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Poster
Topic Image and Video Sensing, Modeling, and Representation: Image & video representation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Leaf image patterns have been actively researched for plant species recognition. However, as a very challenging fine-grained pattern identification issue, cultivar recognition in which the leaf image patterns usually have very subtle difference among cultivars has not yet received considerable attention in computer vision community. In this paper, a novel leaf image descriptor, named local angle co-occurrence histograms, is proposed for addressing this issue. It is a kind of co-occurrence descriptors that encoding both shape and texture features which make them more informative than the existing individual descriptors and co-occurrence features. A feature fusion scheme is proposed to integrate the handcrafted descriptors with deep learning features for further boosting the retrieval performance. The experimental results on the challenging soybean cultivar recognition and peanut cultivar recognition both indicate the superiority of the proposed method over the state-of-the-art methods on leaf image pattern characterization and validate the effectiveness of the proposed method for fine-grained leaf image retrieval.