Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IVASR-5.5
Paper Title DEEP REINFORCEMENT IMAGE MATCHING WITH SELF-TERMINATION
Authors Onkar Krishna, Go Irie, Xiaomeng Wu, Akisato Kimura, Kunio Kashino, NTT Corporation, Japan
SessionMLR-APPL-IVASR-5: Machine learning for image and video analysis, synthesis, and retrieval 5
LocationArea C
Session Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image & video analysis, synthesis, and retrieval
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Deep reinforcement learning-based image matching sequentially searches only the promising regions in the reference image that match the query, leading to a significantly small number of steps compared to traditional methods. Since existing methods do not have any function to judge whether the target region has been successfully identified or not, they continue to search until the preset maximum number of search steps is reached. In this paper, we propose a deep image matching network that can terminate the matching process by itself. Our network is designed to have a halting module that identifies whether the current reference region matches the query based on the image features and the search history. The entire network is effectively trained end-to-end in a framework of deep reinforcement learning that incorporates a new loss function to evaluate the accuracy of the termination decision. Experimental results demonstrate that our method can achieve highly competitive or better matching accuracy with fewer search steps than the existing methods.