Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDCOVID-IP-1.5
Paper Title MMFC: MULTI-MODAL FUSION CASCADE FRAMEWORK FOR COVID-19 DISEASE COURSE CLASSIFICATION
Authors Han Yang, Mengke Zhang, Lu Shen, Qiuli Wang, Wanqiu Cheng, Chongqing University, China; Chen Liu, The First Affiliated Hospital of Army Medical University, China; Minjian Hong, Chongqing University, China
SessionCOVID-IP-1: COVID Related Image Processing 1
LocationArea C
Session Time:Monday, 20 September, 15:30 - 17:00
Presentation Time:Monday, 20 September, 15:30 - 17:00
Presentation Poster
Topic COVID-Related Image Processing: COVID-related image processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Many deep learning methods have been proposed for the diagnosis of COVID-19 since the global pandemic. However, few studies have focused on the disease course classification of COVID-19, which is crucial for radiologists to determine treatment plans. This paper proposes a Multi-Modal Fusion Cascade (MMFC) framework for this task, which can make the most of multi-modal information, including CT image and bio-information (laboratory examination, clinical characterization, etc.). The proposed framework consists of two parts: Bio-Visual Feature Learning Module (BFL) and Joint Decision Module (JD). Firstly, BFL learns the discriminative visual features from the mediastinal window with the assistance of bio-information. According to the official Treatment Protocol of China, the bio-information is chosen and helps the BFL better extract the images’ bio-visual features and then obtained a disease course classification result based on CT images. Secondly, JD uses bio-information again and fuses the confidence of BFL’s result to make the joint decision. Experimental results show that our framework significantly improves accuracy and sensitivity compared to the baseline.