Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDARS-2.8
Paper Title ATTENTION TOWARD NEIGHBORS: A CONTEXT AWARE FRAMEWORK FOR HIGH RESOLUTION IMAGE SEGMENTATION
Authors Fahim Faisal Niloy, M. Ashraful Amin, Amin Ahsan Ali, AKM Mahbubur Rahman, AGenCy Lab, Independent University Bangladesh, Bangladesh
SessionARS-2: Image and Video Segmentation
LocationArea I
Session Time:Monday, 20 September, 15:30 - 17:00
Presentation Time:Monday, 20 September, 15:30 - 17:00
Presentation Poster
Topic Image and Video Analysis, Synthesis, and Retrieval: Image & Video Interpretation and Understanding
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract High-resolution image segmentation remains challenging and error-prone due to the enormous size of intermediate feature maps. Conventional methods avoid this problem by using patch based approaches where each patch is segmented independently. However, independent patch segmentation induces errors, particularly at the patch boundary due to the lack of contextual information in very high-resolution images where the patch size is much smaller compared to the full image. To overcome these limitations, in this paper, we propose a novel framework to segment a particular patch by incorporating contextual information from its neighboring patches. This allows the segmentation network to see the target patch with a wider field of view without the need of larger feature maps. Comparative analysis from a number of experiments shows that our proposed framework is able to segment high resolution images with significantly improved mean Intersection over Union and overall accuracy.