Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IP-1.8
Paper Title SELF-ORGANIZED RESIDUAL BLOCKS FOR IMAGE SUPER-RESOLUTION
Authors Onur Keles, Ahmet Murat Tekalp, Koç University, Turkey; Junaid Malik, Tampere University, Finland; Serkan Kiranyaz, Qatar University, Qatar
SessionMLR-APPL-IP-1: Machine learning for image processing 1
LocationArea E
Session Time:Monday, 20 September, 13:30 - 15:00
Presentation Time:Monday, 20 September, 13:30 - 15:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract It has become a standard practice to use the convolutional networks (ConvNet) with RELU non-linearity in image restoration and super-resolution (SR). Although the universal approximation theorem states that a multi-layer neural network can approximate any non-linear function with the desired precision, it does not reveal the best network architecture to do so. Recently, operational neural networks (ONNs) that choose the best non-linearity from a set of alternatives, and their "self-organized" variants (Self-ONN) that approximate any non-linearity via Taylor series have been proposed to address the well-known limitations and drawbacks of conventional ConvNets such as network homogeneity using only the McCulloch-Pitts neuron model. In this paper, we propose the concept of self-organized operational residual (SOR) blocks, and present hybrid network architectures combining regular residual and SOR blocks to strike a balance between the benefits of stronger non-linearity and the overall number of parameters. The experimental results demonstrate that the~proposed architectures yield performance improvements in both PSNR and perceptual metrics.