Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-NNC.4
Paper Title ENCODER OPTIMIZATIONS FOR THE NNR STANDARD ON NEURAL NETWORK COMPRESSION
Authors Paul Haase, Daniel Becking, Heiner Kirchhoffer, Karsten Müller, Heiko Schwarz, Wojciech Samek, Detlev Marpe, Thomas Wiegand, Fraunhofer Heinrich-Hertz-Institute, Germany
SessionSS-NNC: Special Session: Neural Network Compression and Compact Deep Features
LocationArea B
Session Time:Tuesday, 21 September, 08:00 - 09:30
Presentation Time:Tuesday, 21 September, 08:00 - 09:30
Presentation Poster
Topic Special Sessions: Neural Network Compression and Compact Deep Features: From Methods to Standards
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract The novel Neural Network Compression and Representation Standard (NNR), recently issued by ISO/IEC MPEG, achieves very high coding gains, compressing neural networks to 5% in size without accuracy loss. The underlying NNR encoder technology includes parameter quantization, followed by efficient arithmetic coding, namely DeepCABAC. In addition, NNR also allows very flexible adaptations, such as signaling specific local scaling values, setting quantization parameters per tensor rather than per network and supporting specific parameter fusion operations. This paper presents our new approach for optimally deriving these parameters, namely the derivation of parameters for local scaling adaptation (LSA), inference-optimized quantization (IOQ), and batch-norm folding (BNF). By allowing inference and fine tuning within the encoding process, quantization errors are reduced and the NNR coding efficiency is further improved to a compressed bitstream size of only 3% in comparison to the original model size.