Paper ID | SMR-1.11 | ||
Paper Title | PERCEPTUALLY-WEIGHTED CNN FOR 360-DEGREE IMAGE QUALITY ASSESSMENT USING VISUAL SCAN-PATH AND JND | ||
Authors | Abderrezzaq Sendjasni, Université de Poitiers, France; Mohamed-Chaker Larabi, University of Poitiers, France; Faouzi Alaya Cheikh, Norwegian University of Science and Technology, Norway | ||
Session | SMR-1: Image and Video Quality Assessment | ||
Location | Area F | ||
Session Time: | Tuesday, 21 September, 13:30 - 15:00 | ||
Presentation Time: | Tuesday, 21 September, 13:30 - 15:00 | ||
Presentation | Poster | ||
Topic | Image and Video Sensing, Modeling, and Representation: Perception and quality models for images & video | ||
IEEE Xplore Open Preview | Click here to view in IEEE Xplore | ||
Abstract | Image quality assessment of immersive content and more specifically 360-degree one is still in its infancy. There are many challenges regarding sphere vs. projected representation, human visual system (HVS) properties in a 360-degree environment, etc. In this paper, we propose the use of CNNs to design a no reference model to predict visual quality of 360-degree images. Instead of feeding the CNN with ERPs, visually important viewports are extracted based on visual scan-path prediction and given to a multi-channel CNN using DenseNet-121. Moreover, information about visual fixations and just noticeable difference are used to account for the HVS properties and make the network closer to human judgment. The scan-path is also used to create multiple instances of the database so as to perform a robust generalization analysis and compensate for the lack of databases. |