Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-AVV.7
Paper Title DEPTH ESTIMATION FROM MONOCULAR IMAGES AND SPARSE RADAR USING DEEP ORDINAL REGRESSION NETWORK
Authors Chen-Chou Lo, Patrick Vandewalle, KU Leuven, Belgium
SessionSS-AVV: Special Session: Autonomous Vehicle Vision
LocationArea A
Session Time:Monday, 20 September, 13:30 - 15:00
Presentation Time:Monday, 20 September, 13:30 - 15:00
Presentation Poster
Topic Special Sessions: Autonomous Vehicle Vision
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We integrate sparse radar data into a monocular depth estimation model and introduce a novel preprocessing method for reducing the sparseness and limited field of view provided by radar. We explore the intrinsic error of different radar modalities and show our proposed method results in more data points with reduced error. We further propose a novel method for estimating dense depth maps from monocular 2D images and sparse radar measurements using deep learning based on the deep ordinal regression network by Fu et al. Radar data are integrated by first converting the sparse 2D points to a height-extended 3D measurement and then including it into the network using a late fusion approach. Experiments are conducted on the nuScenes dataset. Our experiments demonstrate state-of-the-art performance in both day and night scenes.