Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-EDNN.7
Paper Title Explainers in the Wild: Making Surrogate Explainers Robust to Distortions through Perception
Authors Alexander Hepburn, Raul Santos-Rodriguez, University of Bristol, United Kingdom
SessionSS-EDNN: Special Session: Explainable Deep Neural Networks for Image/Video Processing
LocationArea B
Session Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Poster
Topic Special Sessions: Explainable Deep Neural Networks for Image/Video Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Explaining the decisions of models is becoming pervasive in the image processing domain, whether it is by using post-hoc methods or by creating inherently interpretable models. While the widespread use of surrogate explainers is a welcome addition to inspect and understand black-box models, assessing the robustness and reliability of the explanations is key for their success. Additionally, whilst existing work in the explainability field proposes various strategies to address this problem, the challenges of working with data in the wild is often overlooked. For instance, in image classification, distortions to images can not only affect the predictions assigned by the model, but also the explanation. Given a clean and a distorted version of an image, even if the prediction probabilities are similar, the explanation may still be different. In this paper we propose a methodology to evaluate the effect of distortions in explanations by embedding perceptual distances that tailor the neighbourhoods used to training surrogate explainers. We also show that by operating in this way, we can make the explanations more robust to distortions. We generate explanations for images in the Imagenet-C dataset and demonstrate how using a perceptual distances in the surrogate explainer creates more coherent explanations for the distorted and reference images.