Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDARS-4.10
Paper Title LEARNING REGIONAL ATTENTION OVER MULTI-RESOLUTION DEEP CONVOLUTIONAL FEATURES FOR TRADEMARK RETRIEVAL
Authors Osman Tursun, Simon Denman, Sridha Sridharan, Clinton Fookes, Queensland University of Technology, Australia
SessionARS-4: Re-Identification and Retrieval
LocationArea I
Session Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Poster
Topic Image and Video Analysis, Synthesis, and Retrieval: Image & Video Storage and Retrieval
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Large-scale trademark retrieval is an important content-based image retrieval task. A recent study shows that off-the-shelf deep features aggregated with Regional-Maximum Activation of Convolutions (R-MAC) achieve state-of-the-art results. However, R-MAC suffers in the presence of background clutter/trivial regions and scale variance, and discards important spatial information. We introduce three simple but effective modifications to R-MAC to overcome these drawbacks. First, we propose the use of both sum and max pooling to minimise the loss of spatial information. We also employ domain-specific unsupervised soft-attention to eliminate background clutter and unimportant regions. Finally, we add multi-resolution inputs to enhance the scale-invariance of R-MAC. We evaluate these three modifications on the million-scale METU dataset. Our results show that all modifications bring non-trivial improvements, and surpass previous state-of-the-art results.