Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IVASR-3.9
Paper Title REPRESENTATION DECOMPOSITION FOR IMAGE MANIPULATION AND BEYOND
Authors Shang-Fu Chen, Jai-Wei Yan, National Taiwan University, Taiwan; Ya-Fan Su, Chunghwa Telecom, Taiwan; Yu-Chiang Frank Wang, National Taiwan University, Taiwan
SessionMLR-APPL-IVASR-3: Machine learning for image and video analysis, synthesis, and retrieval 3
LocationArea E
Session Time:Tuesday, 21 September, 08:00 - 09:30
Presentation Time:Tuesday, 21 September, 08:00 - 09:30
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image & video analysis, synthesis, and retrieval
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Representation disentanglement aims at learning interpretable features so that the output can be recovered or manipulated accordingly. While existing works like infoGAN and AC-GAN exist, they choose to derive disjoint attribute code for feature disentanglement, which is not applicable for existing/trained generative models. In this paper, we propose a decomposition-GAN (dec-GAN), which is able to achieve the decomposition of an existing latent representation into content and attribute features. Guided by the classifier pre-trained on the attributes of interest, our dec-GAN decomposes the attributes of interest from the latent representation, while data recovery and feature consistency objectives enforce the learning of our proposed method. Our experiments on multiple image datasets confirm the effectiveness and robustness of our dec-GAN over recent representation disentanglement models