Paper ID | 3D-2.7 | ||
Paper Title | M3VSNET: UNSUPERVISED MULTI-METRIC MULTI-VIEW STEREO NETWORK | ||
Authors | Baichuan Huang, Wuhan University, China; Hongwei Yi, Peking University, China; Can Huang, Yijia He, Megvii Technology Limited, China; Jingbin Liu, Wuhan University, China; Xiao Liu, Megvii Technology Limited, China | ||
Session | 3D-2: Point Cloud Processing 2 | ||
Location | Area J | ||
Session Time: | Wednesday, 22 September, 08:00 - 09:30 | ||
Presentation Time: | Wednesday, 22 September, 08:00 - 09:30 | ||
Presentation | Poster | ||
Topic | Three-Dimensional Image and Video Processing: Stereoscopic and multiview processing and display | ||
IEEE Xplore Open Preview | Click here to view in IEEE Xplore | ||
Abstract | The present Multi-view stereo (MVS) methods with supervised learning-based networks have an impressive performance comparing with traditional MVS methods. However, the ground-truth depth maps for training are hard to be obtained and are within limited kinds of scenarios. In this paper, we propose a novel unsupervised multi-metric MVS network, named M3VSNet, for dense point cloud reconstruction without any supervision. To improve the robustness and completeness of point cloud reconstruction, we propose a novel multi-metric loss function that combines pixel-wise and feature-wise loss function to learn the inherent constraints from different perspectives of matching correspondences. Besides, we also incorporate the normal-depth consistency in the 3D point cloud format to improve the accuracy and continuity of the estimated depth maps. Experimental results show that M3VSNet establishes the state-of-the-arts unsupervised method and achieves better performance than previous supervised MVSNet on the DTU dataset and demonstrates the powerful generalization ability on the Tanks & Temples benchmark with effective improvement. |