Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIMT-CIF-1.1
Paper Title HIERARCHICAL AND MULTI-LEVEL COST AGGREGATION FOR STEREO MATCHING
Authors Wei Guo, Ziyu Zhu, Fukun Xia, Jiarui Sun, Yong Zhao, Peking University, China
SessionIMT-CIF-1: Computational Imaging 1
LocationArea J
Session Time:Monday, 20 September, 13:30 - 15:00
Presentation Time:Monday, 20 September, 13:30 - 15:00
Presentation Poster
Topic Computational Imaging Methods and Models: Learning-Based Models
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Nowadays, convolutional neural networks based on deep learning have greatly improved the performance of stereo matching. To obtain higher disparity estimation accuracy in ill-posed regions, this paper proposes a hierarchical and multi-level model based on a novel cost aggregation module (HMLNet). This effective cost aggregation consists of two main modules: one is the multi-level cost aggregation which incorporates global context information by fusing information in different levels, and the other called the hourglass+ module utilizes sufficiently volumes in the same level to regularize cost volumes better. Also, we take advantage of disparity refinement with residual learning to boost robustness to challenging situations. We conducted comprehensive experiments on Sceneflow, KITTI 2012, and KITTI 2015 datasets. The competitive results prove that our approach outperforms many other stereo matching algorithms.