Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDCIS-1.1
Paper Title ACCOUNTING FOR INTER-SUBJECT VARIATIONS IN DEEP LEARNING FOR REDUCED-DOSE STUDIES IN CARDIAC SPECT
Authors Junchi Liu, Yongyi Yang, Miles N. Wernick, Illinois Institute of Technology, United States; P. Hendrik Pretorius, Michael A. King, University of Massachusetts Medical School, United States
SessionCIS-1: Computational Imaging Systems
LocationArea J
Session Time:Monday, 20 September, 15:30 - 17:00
Presentation Time:Monday, 20 September, 15:30 - 17:00
Presentation Poster
Topic Computational Imaging Systems: Medical imaging: image formation, reconstruction, restoration
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Deep learning (DL) denoising has recently found applications in a wide range of important problems in medical imaging. A practical challenge encountered in clinical applications is that the acquired image data can exhibit great variability in terms of noise level among different subjects. In this study, we investigate whether it can be beneficial to exploit the varying data statistics among different subjects in a DL denoising network. We propose a modified loss function in the form of a weighted sum of mean-squared-errors for DL training in which the contribution from individual subjects is adjusted according to their noise levels. In the experiments we demonstrated this approach with a set of 895 clinical acquisitions in cardiac SPECT studies with 50% of standard dose. The quantitative results show that the proposed approach can further improve both the regional accuracy of the reconstructed left ventricle and the detection accuracy of perfusion defects.