Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-MRII.7
Paper Title SPATIO-TEMPORAL GRAPH-RNN FOR POINT CLOUD PREDICTION
Authors Pedro Gomes, Silvia Rossi, Laura Toni, University College London, United Kingdom
SessionSS-MRII: Special Session: Models and representations for Immersive Imaging
LocationArea A
Session Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Poster
Topic Special Sessions: Models and Representations for Immersive Imaging
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this paper, we propose an end-to-end learning network to predict future frames in a point cloud sequence. As main novelty, an initial layer learns topological information of point clouds as geometric features, to form representative spatio-temporal neighborhoods. This module is followed by multiple Graph-RNN cells. Each cell learns points dynamics (i.e., RNN states) by processing each point jointly with the spatio-temporal neighbouring points. We tested the network performance with a MINST dataset of moving digits, a synthetic human bodies motions and JPEG dynamic bodies datasets. Simulation results demonstrate that our method outperforms baseline ones that neglect geometry features information.