Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IVSMR-2.9
Paper Title OPEN-SET RECOGNITION WITH GRADIENT-BASED REPRESENTATIONS
Authors Jinsol Lee, Ghassan AlRegib, Georgia Institute of Technology, United States
SessionMLR-APPL-IVSMR-2: Machine learning for image and video sensing, modeling and representation 2
LocationArea D
Session Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image & video sensing, modeling, and representation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Neural networks for image classification tasks assume that any given image during inference belongs to one of the training classes. This closed-set assumption is challenged in real-world applications where models may encounter inputs of unknown classes. Open-set recognition aims to solve this problem by rejecting unknown classes while classifying known classes correctly. In this paper, we propose to utilize gradient-based representations obtained from a known classifier to train an unknown detector with instances of known classes only. Gradients correspond to the amount of model updates required to properly represent a given sample, which we exploit to understand the model's capability to characterize inputs with its learned features. Our approach can be utilized with any classifier trained in a supervised manner on known classes without the need to model the distribution of unknown samples explicitly. We show that our gradient-based approach outperforms state-of-the-art methods by up to 11.6% in open-set classification.