Paper ID | MLR-APPL-IP-2.8 | ||
Paper Title | SPARSE SPATIAL ATTENTION NETWORK FOR SEMANTIC SEGMENTATION | ||
Authors | Mengyu Liu, Hujun Yin, University of Manchester, United Kingdom | ||
Session | MLR-APPL-IP-2: Machine learning for image processing 2 | ||
Location | Area E | ||
Session Time: | Monday, 20 September, 15:30 - 17:00 | ||
Presentation Time: | Monday, 20 September, 15:30 - 17:00 | ||
Presentation | Poster | ||
Topic | Applications of Machine Learning: Machine learning for image processing | ||
IEEE Xplore Open Preview | Click here to view in IEEE Xplore | ||
Abstract | The spatial attention mechanism captures long-range dependencies by aggregating global contextual information to each query location, which is beneficial for semantic segmentation. In this paper, we present a sparse spatial attention network (SSANet) to improve the efficiency of the spatial attention mechanism without sacrificing the performance. Specifically, a sparse non-local (SNL) block is proposed to sample a subset of key and value elements for each query element to capture long-range relations adaptively and generate a sparse affinity matrix to aggregate contextual information efficiently. Experimental results show that the proposed approach outperforms other context aggregation methods and achieves state-of-the-art performance on the Cityscapes, PASCAL Context and ADE20K datasets. |