Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IP-7.12
Paper Title LEARNING NONPARAMETRIC HUMAN MESH RECONSTRUCTION FROM A SINGLE IMAGE WITHOUT GROUND TRUTH MESHES
Authors Kevin Lin, Lijuan Wang, Ying Jin, Zicheng Liu, Microsoft, United States; Ming-Ting Sun, University of Washington, United States
SessionMLR-APPL-IP-7: Machine learning for image processing 7
LocationArea E
Session Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Poster
Topic Applications of Machine Learning: Machine Learning for 3D Image and Video Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We present a novel approach to learn human mesh reconstruction without ground truth mesh labels. This is made possible by introducing two new terms into the loss function of a graph convolutional neural network (Graph CNN). The first term is the Laplacian prior that acts as a regularizer on the mesh reconstruction. The second term is the part segmentation loss that forces the projected region of the reconstructed mesh to match the part segmentation. Extensive experiments validate the effectiveness of the proposed approach.