Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-MDSP.1
Paper Title HYBRID FUSION BASED APPROACH FOR MULTIMODAL EMOTION RECOGNITION WITH INSUFFICIENT LABELED DATA
Authors Puneet Kumar, Vedanti Khokher, Yukti Gupta, Balasubramanian Raman, Indian Institute of Technology Roorkee, India
SessionMLR-APPL-MDSP: Machine learning for multidimensional signal processing
LocationArea F
Session Time:Monday, 20 September, 13:30 - 15:00
Presentation Time:Monday, 20 September, 13:30 - 15:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for multidimensional signal processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this paper, a deep learning based fusion approach has been proposed to classify the emotions portrayed by image and corresponding text into discrete emotion classes. The proposed method first implements intermediate fusion on image and text inputs and then applies late fusion on image, text, and intermediate fusion's output. We have also come up with a way to handle the unavailability of labeled multimodal emotional data. We have prepared a new dataset built on Balanced Twitter for Sentiment Analysis dataset (B-T4SA) dataset containing an image, text, and emotion labels, i.e., 'happy,' 'sad,' 'hate' and 'anger.' The emotion recognition accuracy of 90.20% has been achieved by the proposed method. Along with multi-class emotion recognition, we've also compared the sentiment classification results and found the proposed method to perform better than the benchmark approaches.