Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IP-7.5
Paper Title LINECOUNTER: LEARNING HANDWRITTEN TEXT LINE SEGMENTATION BY COUNTING
Authors Deng Li, University of Macau, Macao SAR of China; Yue Wu, Amazon, United States; Yicong Zhou, University of Macau, Macao SAR of China
SessionMLR-APPL-IP-7: Machine learning for image processing 7
LocationArea E
Session Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Handwritten Text Line Segmentation (HTLS) is a low-level but important task for many higher-level document processing tasks like handwritten text recognition. It is often formulated in terms of semantic segmentation or object detection in deep learning. However, both formulations have serious shortcomings. The former requires heavy post-processing of splitting/merging adjacent segments, while the latter may fail on dense or curved texts. In this paper, we propose a novel Line Counting formulation for HTLS -- that involves counting the number of text lines from the top at every pixel location. This formulation helps learn an end-to-end HTLS solution that directly predicts per-pixel line number for a given document image. Furthermore, we propose a deep neural network (DNN) model LineCounter to perform HTLS through the Line Counting formulation. Our extensive experiments on the three public datasets (ICDAR2013-HSC, HIT-MW, and VML-AHTE) demonstrate that LineCounter outperforms state-of-the-art HTLS approaches. Source code is available at https://github.com/Leedeng/LineCounter.