Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IP-3.12
Paper Title PSEUDO-LABEL GENERATION-EVALUATION FRAMEWORK FOR CROSS DOMAIN WEAKLY SUPERVISED OBJECT DETECTION
Authors Shengxiong Ouyang, Xinglu Wang, Kejie Lyu, Yingming Li, Zhejiang University, China
SessionMLR-APPL-IP-3: Machine learning for image processing 3
LocationArea F
Session Time:Tuesday, 21 September, 08:00 - 09:30
Presentation Time:Tuesday, 21 September, 08:00 - 09:30
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Cross domain weakly supervised object detection (CDWSOD), where we can get access to instance-level annotations in the source domain while only image-level annotations are available in the target domain, adapts object detectors from label-rich to label-poor domains. It usually generates pseudo labels in the target domain and utilizes them to finetune the detector pretrained in the source domain. In this paper, we propose a new pseudo-label generation-evaluation framework for CDWSOD task. In particular, an evaluator is introduced for the generated pseudo labels in the target domain and the transferring process involves two players: the detector to generate instance-level pseudo labels and the evaluator to judge the quality of pseudo labels. Only high-quality pseudo labels selected by the evaluator are utilized to finetune the detector. Experiments on three representative datasets demonstrate the effectiveness of our framework in various domains.