Paper ID | SS-AVV.3 | ||
Paper Title | MULTISCALE DOMAIN ADAPTIVE YOLO FOR CROSS-DOMAIN OBJECT DETECTION | ||
Authors | Mazin Hnewa, Hayder Radha, Michigan State University, United States | ||
Session | SS-AVV: Special Session: Autonomous Vehicle Vision | ||
Location | Area A | ||
Session Time: | Monday, 20 September, 13:30 - 15:00 | ||
Presentation Time: | Monday, 20 September, 13:30 - 15:00 | ||
Presentation | Poster | ||
Topic | Special Sessions: Autonomous Vehicle Vision | ||
IEEE Xplore Open Preview | Click here to view in IEEE Xplore | ||
Abstract | The area of domain adaptation has been instrumental in addressing the domain shift problem encountered by many applications. This problem arises due to the difference between the distributions of source data used for training in comparison with target data used during realistic testing scenarios. In this paper, we introduce a novel MultiScale Domain Adaptive YOLO (MS-DAYOLO) framework that employs multiple domain adaptation paths and corresponding domain classifiers at different scales of the recently introduced YOLOv4 object detector to generate domain-invariant features. We train and test our proposed method using popular datasets. Our experiments show significant improvements in object detection performance when training YOLOv4 using the proposed MS-DAYOLO and when tested on target data representing challenging weather conditions for autonomous driving applications. |