Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IP-5.10
Paper Title PART-BASED FEATURE SQUEEZING TO DETECT ADVERSARIAL EXAMPLES IN PERSON RE-IDENTIFICATION NETWORKS
Authors Yu Zheng, Senem Velipasalar, Syracuse University, United States
SessionMLR-APPL-IP-5: Machine learning for image processing 5
LocationArea E
Session Time:Tuesday, 21 September, 13:30 - 15:00
Presentation Time:Tuesday, 21 September, 13:30 - 15:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Although deep neural networks (DNNs) have achieved top performances in different computer vision task, such as object detection, image segmentation and person re-identification (ReID), they can easily be deceived by adversarial examples, which are carefully crafted images with perturbations that are imperceptible to human eyes. Such adversarial examples can significantly degrade the performance of existing DNNs. There are also targeted attacks misleading classifiers into making specific decisions based on attackers' intentions. In this paper, we propose a new method to effectively detect adversarial examples presented to a person ReID network. The proposed method utilizes parts-based feature squeezing to detect the adversarial examples. We apply two types of squeezing to segmented body parts to better detect adversarial examples. We perform extensive experiments over three major datasets with different attacks, and compare the detection performance of the proposed body part-based approach with a ReID method that is not parts-based. Experimental results show that the proposed method can effectively detect the adversarial examples, and has the potential to avoid significant decreases in person ReID performance caused by adversarial examples.