Paper ID | 3D-2.4 | ||
Paper Title | PLNL-3DSSD: PART-AWARE 3D SINGLE STAGE DETECTOR USING LOCAL AND NON-LOCAL ATTENTION | ||
Authors | Haizhuang Liu, Huimin Ma, Yanxian Chen, University of Science and Technology Beijing, China; Xi Li, Tsinghua University, China; Tianyu Hu, University of Science and Technology Beijing, China | ||
Session | 3D-2: Point Cloud Processing 2 | ||
Location | Area J | ||
Session Time: | Wednesday, 22 September, 08:00 - 09:30 | ||
Presentation Time: | Wednesday, 22 September, 08:00 - 09:30 | ||
Presentation | Poster | ||
Topic | Three-Dimensional Image and Video Processing: Point cloud processing | ||
IEEE Xplore Open Preview | Click here to view in IEEE Xplore | ||
Abstract | 3D object detection in the real crowded scene is still a challenging task due to occlusion and density change. We propose a part-aware 3D single-stage detector with local and non-local attention (PLNL-3DSSD) to fully use part information and inter-object relation. A primary part feature fusion is proposed for encoding the entire box feature vector by introducing semantic parts dividing. We develop a parallel part branch for robust and accurate object detection. We also develop local and non-local attention in set abstraction for enhancing data flow transfer between objects. Our method ranks second in single-stage 3D object detector on the KITTI 3D car detection benchmark while ensuring satisfactory efficiency. |