Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-3DPU.9
Paper Title HIGH-FREQUENCY SHAPE RECOVERY FROM SHADING BY CNN AND DOMAIN ADAPTATION
Authors Kodai Tokieda, Takafumi Iwaguchi, Hiroshi Kawasaki, Kyushu University, Japan
SessionSS-3DPU: Special Session: 3D Visual Perception and Understanding
LocationArea B
Session Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Poster
Topic Applications of Machine Learning: Machine Learning for 3D Image and Video Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Importance of structured-light based one-shot scanning technique is increasing because of its simple system configuration and ability of capturing moving objects. One severe limitation of the technique is that it can capture only sparse shape, but not high frequency shapes, because certain area of projection pattern is required to encode spatial information. In this paper, we propose a technique to recover high-frequency shapes by using shading information, which is captured by one-shot RGB-D sensor based on structured light with single camera. Since color image comprises shading information of object surface, high-frequency shapes can be recovered by shape from shading techniques. Although multiple images with different lighting positions are required for shape from shading techniques, we propose a learning based approach to recover shape from a single image. In addition, to overcome the problem on preparing sufficient amount of data for training, we propose a new data augmentation method for high-frequency shapes using synthetic data and domain adaptation. Experimental results are shown to confirm the effectiveness of the proposed method.