Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IVSMR-3.3
Paper Title SEMI-SUPERVISED LEARNING FOR MARS IMAGERY CLASSIFICATION
Authors Wenjing Wang, Lilang Lin, Zejia Fan, Jiaying Liu, Peking University, China
SessionMLR-APPL-IVSMR-3: Machine learning for image and video sensing, modeling and representation 3
LocationArea D
Session Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image & video sensing, modeling, and representation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract With the progress of Mars exploration, numerous Mars image data are collected and need to be analyzed. However, because of the imbalance and distortion in Mars data, the performance of existing classification models is unsatisfactory. In this paper, we design a new framework based on semi-supervised contrastive learning for Mars rover image classification. The redundancy of Mars data can disable the effectiveness of contrastive learning. To strip out problematic learning samples, we propose to ignore inner-class pairs on labeled data as well as neglect negative pairs on unlabeled data. Experimental results show that our learning strategies can improve the classification model by a large margin and outperform state-of-the-art methods.